Surface Acoustic Wave Sensors for Hydrogen and Deuterium Detection

نویسندگان

  • Aurelian Marcu
  • Cristian Viespe
چکیده

A delay-line-type surface acoustic wave (SAW) sensor based on a zinc oxide (ZnO) sensitive layer was developed. Two types of sensitive layers were obtained: ZnO nanowires and ZnO thin films, both deposited using laser methods (VLS-PLD and PLD, respectively) onto quartz substrates. The responses of sensors with two different nanowire lengths (300 and 600 nm) were compared with those of sensors with thin films of different thicknesses (ca. 100 and 200 nm) to different concentrations of hydrogen and deuterium. The experimental results revealed a high response at low concentrations and a rapid saturated response for nanowires, but a low response at low concentrations and a linear response to much higher gas concentrations for the thin-film-based SAW sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a S...

متن کامل

TiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application

The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...

متن کامل

Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements.

An inexpensive digital microfluidic (DMF) chip was fabricated by screen-printing electrodes on a sheet of polyimide. This device was manually integrated with surface acoustic wave nebulization (SAWN) MS to conduct hydrogen/deuterium exchange (HDX) of peptides. The HDX experiment was performed by DMF mixing of one aqueous droplet of angiotensin II with a second containing various concentrations ...

متن کامل

Surface Acoustic Wave Sensor with Pd/ZnO Bilayer Structure for Room Temperature Hydrogen Detection

A Surface Acoustic Wave (SAW) hydrogen sensor with a Pd/ZnO bilayer structure for room temperature sensing operation has been obtained by Pulsed Laser Deposition (PLD). The sensor structure combines a Pd layer with optimized porosity for maximizing mass effects, with the large acoustoelectric effect at the Pd/ZnO interface. The large acoustoelectric effect is due to the fact that ZnO has a surf...

متن کامل

Graphene-like Nano-Sheets/36° LiTaO3 Surface Acoustic Wave Hydrogen Gas Sensor

Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017